Mixing of the upper triangular matrix walk

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mixing of the Upper Triangular Matrix Walk

We study a natural random walk over the upper triangular matrices, with entries in the field Z2, generated by steps which add row i + 1 to row i. We show that the mixing time of the lazy random walk is O(n) which is optimal up to constants. Our proof makes key use of the linear structure of the group and extends to walks on the upper triangular matrices over the fields Zq for q prime.

متن کامل

Random walk on upper triangular matrices mixes rapidly

We present an upper bound O(n2) for the mixing time of a simple random walk on upper triangular matrices. We show that this bound is sharp up to a constant, and find tight bounds on the eigenvalue gap. We conclude by applying our results to indicate that the asymmetric exclusion process on a circle indeed mixes more rapidly than the corresponding symmetric process.

متن کامل

A Super-class Walk on Upper-triangular Matrices

Let G be the group of n×n upper-triangular matrices with elements in a finite field and ones on the diagonal. This paper applies the character theory of Andre, Carter and Yan to analyze a natural random walk based on adding or subtracting a random row from the row above.

متن کامل

Involutions and characters of upper triangular matrix groups

We study the realizability over R of representations of the group U(n) of upper-triangular n× n matrices over F2. We prove that all the representations of U(n) are realizable over R if n ≤ 12, but that if n ≥ 13, U(n) has representations not realizable over R. This theorem is a variation on a result that can be obtained by combining work of J. Arregi and A. Vera-López and of the authors, but th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Probability Theory and Related Fields

سال: 2012

ISSN: 0178-8051,1432-2064

DOI: 10.1007/s00440-012-0436-1